A Potent Malaria Transmission Blocking Vaccine Based on Codon Harmonized Full Length Pfs48/45 Expressed in Escherichia coli

نویسندگان

  • Debabani Roy Chowdhury
  • Evelina Angov
  • Thomas Kariuki
  • Nirbhay Kumar
چکیده

Malaria caused by Plasmodium falciparum is responsible for nearly 1 million deaths annually. Although much progress has been made in the recent past, the development of a safe, effective and affordable malaria vaccine has remained a challenge. A vaccine targeting sexual stages of the parasite will not only reduce malaria transmission by female Anopheles mosquitoes, but also reduce the spread of parasites able to evade immunity elicited by vaccines targeting pre-erythrocytic and erythrocytic asexual stages. We focused our studies on Pfs48/45, a protein expressed in the sexual stages developing within an infected person and one of the most promising transmission-blocking vaccine targets. Functional immunogenicity of Pfs48/45 protein requires proper disulfide bond formation, consequently evaluation of the immunogenicity of recombinant full-length Pfs48/45 has been hampered by difficulties in expressing properly folded protein to date. Here we present a strategy involving harmonization of codons for successful recombinant expression of full length Pfs48/45 in Escherichia coli. The purified protein, designated CH-rPfs48/45, was recognized by monoclonal antibodies directed against reduction-sensitive conformational epitopes in the native protein. Immunogenicity evaluation in mice revealed potent transmission blocking activity in membrane feeding assays of antisera elicited by CH-rPfs48/45 formulated in three different adjuvants, i.e. Alum, Montanide ISA-51 and complete Freund's adjuvant. More importantly, CH-rPfs48/45 formulated with Montanide ISA-51 when administered to nonhuman primates (Olive baboons, Papio anubis) resulted in uniformly high antibody responses (ELISA titers >2 million) in all five animals. Sera from these animals displayed greater than 93% blocking activity in membrane feeding assays after a single immunization, reaching nearly complete blocking after a booster dose of the vaccine. The relative ease of expression and induction of potent transmission blocking antibodies in mice and nonhuman primates provide a compelling rationale and basis for development of a CH-rPfs48/45 based malaria transmission blocking vaccine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potent malaria transmission-blocking antibody responses elicited by Plasmodium falciparum Pfs25 expressed in Escherichia coli after successful protein refolding.

Production of Pfs25, a Plasmodium falciparum transmission-blocking vaccine target antigen, in functional conformation with the potential to elicit effective immunogenicity still remains a major challenge. In the current study, codon-harmonized recombinant Pfs25 (CHrPfs25) was expressed in Escherichia coli, and purified protein after simple oxidative refolding steps retained reduction-sensitive ...

متن کامل

Recombinant Pvs48/45 Antigen Expressed in E. coli Generates Antibodies that Block Malaria Transmission in Anopheles albimanus Mosquitoes

Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilizatio...

متن کامل

Epitope analysis of the malaria surface antigen pfs48/45 identifies a subdomain that elicits transmission blocking antibodies.

Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine module recognized by anti-epitope I antibo...

متن کامل

Immunological Cross-Reactivity between Malaria Vaccine Target Antigen P48/45 in Plasmodium vivax and P. falciparum and Cross–Boosting of Immune Responses

In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are wel...

متن کامل

Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine

BACKGROUND The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009